A Generalized Epidemic Process and Tricritical Dynamic Percolation
نویسندگان
چکیده
The renowned general epidemic process describes the stochastic evolution of a population of individuals which are either susceptible, infected or dead. A second order phase transition belonging to the universality class of dynamic isotropic percolation lies between endemic or pandemic behavior of the process. We generalize the general epidemic process by introducing a fourth kind of individuals, viz. individuals which are weakened by the process but not yet infected. This sensibilization gives rise to a mechanism that introduces a global instability in the spreading of the process and therefore opens the possibility of a discontinuous transition in addition to the usual continuous percolation transition. The tricritical point separating the lines of first and second order transitions constitutes a new universality class, namely the universality class of tricritical dynamic isotropic percolation. Using renormalized field theory we work out a detailed scaling description of this universality class. We calculate the scaling exponents in an ε-expansion below the upper critical dimension dc = 5 for various observables describing tricritical percolation clusters and their spreading properties. In a remarkable contrast to the usual percolation transition, the exponents β and β′ governing the two order parameters, viz. the mean density and the percolation probability, turn out to be different at the tricritical point. In addition to the scaling exponents we calculate for all our static and dynamic observables logarithmic corrections to the mean-field scaling behavior at dc = 5.
منابع مشابه
Tricritical directed percolation
We consider a modification of the contact process incorporating higher-order reaction terms. The original contact process exhibits a non-equilibrium phase transition belonging to the universality class of directed percolation. The incorporated higher-order reaction terms lead to a non-trivial phase diagram. In particular, a line of continuous phase transitions is separated by a tricritical poin...
متن کاملMessage passing theory for percolation models on multiplex networks with link overlap.
Multiplex networks describe a large variety of complex systems, including infrastructures, transportation networks, and biological systems. Most of these networks feature a significant link overlap. It is therefore of particular importance to characterize the mutually connected giant component in these networks. Here we provide a message passing theory for characterizing the percolation transit...
متن کاملTricritical point in explosive percolation.
The suitable interpolation between classical percolation and a special variant of explosive percolation enables the explicit realization of a tricritical percolation point. With high-precision simulations of the order parameter and the second moment of the cluster size distribution a fully consistent tricritical scaling scenario emerges yielding the tricritical crossover exponent 1/φ(t)=1.8 ± 0.1.
متن کاملEquivalence of several generalized percolation models on networks.
In recent years, many variants of percolation have been used to study network structure and the behavior of processes spreading on networks. These include bond percolation, site percolation, k-core percolation, bootstrap percolation, the generalized epidemic process, and the Watts threshold model (WTM). We show that-except for bond percolation-each of these processes arises as a special case of...
متن کاملShift of percolation thresholds for epidemic spread between static and dynamic small-world networks
The study compares the epidemic spread on static and dynamic small-world networks. They are constructed as a 2-dimensional Newman and Watts model (500 × 500 square lattice with additional shortcuts), where the dynamics involves rewiring shortcuts in every time step of the epidemic spread. We assume susceptible-infectious-removed (SIR) model of the disease. We study the behaviour of the epidemic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004